info penting materi dan soal-soal fisika

  • Supermassive Black Hole

    This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. This thin disc of rotating material consists of the leftovers of a Sun-like star which was ripped apart by the tidal forces of the black hole. Shocks in the colliding debris as well as heat generated in accretion led to a burst of light, resembling a supernova explosion. Credit: ESO, ESA/Hubble, M. Kornmesser

  • Cold Intergalactic Rain

    The cosmic weather report, as illustrated in this artist’s concept, calls for condensing clouds of cold molecular gas around the Abell 2597 Brightest Cluster Galaxy. The clouds condense out of the hot, ionised gas that suffuses the space between the galaxies in this cluster. Credit: NRAO/AUI/NSF; Dana Berry/SkyWorks; ALMA (ESO/NAOJ/NRAO)

  • The Quasar 3C 279

    This is an artist’s impression of the quasar 3C 279. Astronomers connected the Atacama Pathfinder Experiment (APEX), in Chile, to the Submillimeter Array (SMA) in Hawaii, USA, and the Submillimeter Telescope (SMT) in Arizona, USA for the first time, to make the sharpest observations ever, of the centre of a distant galaxy, the bright quasar 3C 279. Credit: ESO/M. Kornmesser

  • An Active Galactic Nucleus

    Artist's impression of an active galaxy that has jets. The central engine is thought to be a supermassive black hole surrounded by an accretion disc and enshrouded in a dusty doughnut-shaped torus. The torus of dust and gas can be seen orbiting a flatter disc of swirling gas. Courtesy Aurore Simonnet, Sonoma State University. Credit: ESO

  • The Horsehead Nebula

    A reproduction of a composite colour image of the Horsehead Nebula and its immediate surroundings. It is based on three exposures in the visual part of the spectrum with the FORS2 multi-mode instrument at the 8.2-m KUEYEN telescope at Paranal. This image is available as a mounted image in the ESOshop. Credit: ESO

Nicola Tesla dan Oersted

Nikolas Tesla
Nikolas Tesla lahir pada tanggal 10 Juli 1856 di Smiljan, di zona Perbatasan Militer Kekaisaran Austria-Hungaria, sekarang di Republik Kroasia. Ia menerima pendidikan di Austria yaitu Austria-Hungaria : sekolah dasar di Smiljan dan Gospic (1862-1870) dan sekolah menengah (Realgymnasium) di Karlovac (1870-1873). Dari 1875 – 1878 belajar di Politeknik di Graz dan pada tahun 1880 ia terdaftar dalam studi filsafat alam di Charles University di Praha.
Nikolas Tesla memberikan kontribusi yagn terbesar bagi ilmu pengetahuan dan kemajuan teknologi dunia sebagai penemu medan magnet berputar dan sistem lengkap produksi dan distribusi energy listrik (motor;generator) berdasarkan (Tesla). Tesla juga membangun generator dari arus frekuensi tinggi tanpa biji alternative dan trafo tegangan tinggi yang sekarang dinekal sebagai “Tesla Coil”. Tesla menghabiskan waktunya bertahun-tahun dan terakhir di Hotel “New Yorker” di New York dan meninggal pada tanggal 5 Januari 1943.
Oersted
Listrik dan Magnet merupakan sebuah kesatuan alam
Hans Christian Oersted di kenal sebagai fisikawan dan kimiawan yang merumuskan prinsip-prinsi dasar hubungan listrik dengan magnet. Oersted dilahirkan di Rudkobing Denmark 14 Agustus 1777. Pendidikan tingginya diselesaikan di Universitas Copenhagen dalam bidang farmasi dan fisika. Di tingkat Doctoral diraihnya tahun 1799 dan pada tahun 1806 ia menjadi professor bidang fisika dan kimia di universitas tersebut.
Ia menemukan adanya penyimpangan jarum kompas saat di dekatkan dengan kawat berarus listrik. Berdasarkan hal itu, dapat disimpulkan bahwa garis-garis dalam medan magnet dipengaruhi oleh medan listrik. Fenomena ini menjadi titik awal pengungkapan adanya keterkaitan yang erat antar listrik dengan magnet secara timbal balik. Nama Oersted sendiri kemudian diabadikan sebagai satuan intensitas medan magnet dalam system cgs
Begitu sejarahnya, semoga bermanfaat
Sumber : Fokus Fisika Kelas XII


Share:

Chapter Getaran, Gelombang EM dan Optik Plus SNMPTN

Karakteristik Gelombang Bunyi
Gelombang bunyi mempunyai beberapa karakteristik seperti memantul, difraksi, membias dan lain sebagainya. Gelombang bunyi memiliki beberapa karakteristik, yaitu sebagai berikut : Gelombang bunyi menghasilkan frekuensi tertentu hingga bergetar di gendang telingan ; Gelombang bunyi bergetar dan berdesakan ke berbagai arah. Semakin jauh jarak perambatannya, maka gelombang akan mengecil karena tekanan yang merenggang ; Geombang bunyi merambat melalui medium apapun di sekitarnya tetapi tidak merambat pada ruang hampa seperti luar angkasa, karena udara adalah medium utama perambatan bunyi ; Dengan hitungan cepat, getaran di gendang telinga akan merambat hingga ke saraf menuju otak, dan nantinya bagian dalam otak akan menerjemahkan bunyi berdasarkan memori yang tersimpan, atau menyimpannya sebagai memori yang baru. 
Optika
Optika adalah cabang fisika yang menggambarkan perilaku dan sifat cahaya dan interaksi cahaya dengan materi. Optika menerangkan dan diwarnai oleh gejala optis. Kata optik berasal dari bahasa Latin ὀπτική, yang berarti tampilan. Bidang optika biasanya menggambarkan sifat cahaya tampak, inframerah dan ultraviolet; tetapi karena cahaya adalah gelombang elektromagnetik, gejala yang sama juga terjadi di sinar-X, gelombang mikro, gelombang radio, dan bentuk lain dari radiasi elektromagnetik dan juga gejala serupa seperti pada sorotan partikel muatan (charged beam). Optik secara umum dapat dianggap sebagai bagian dari keelektromagnetan. Beberapa gejala optis bergantung pada sifat kuantum cahaya yang terkait dengan beberapa bidang optika hingga mekanika kuantum. Dalam praktiknya, kebanyakan dari gejala optis dapat dihitung dengan menggunakan sifat elektromagnetik dari cahaya, seperti yang dijelaskan oleh persamaan Maxwell. Bidang optika memiliki identitas, masyarakat, dan konferensinya sendiri. Aspek keilmuannya sering disebut ilmu optik atau fisika optik. Ilmu optik terapan sering disebut rekayasa optik. Aplikasi dari rekayasa optik yang terkait khusus dengan sistem iluminasi(iluminasi) disebut rekayasa pencahayaan. Setiap disiplin cenderung sedikit berbeda dalam aplikasi, keterampilan teknis, fokus, dan afiliasi profesionalnya. Inovasi lebih baru dalam rekayasa optik sering dikategorikan sebagai fotonika atau optoelektronika. Batas-batas antara bidang ini dan "optik" sering tidak jelas, dan istilah yang digunakan berbeda di berbagai belahan dunia dan dalam berbagai bidang industri. Karena aplikasi yang luas dari ilmu "cahaya" untuk aplikasi dunia nyata, bidang ilmu optika dan rekayasa optik cenderung sangat lintas disiplin. Ilmu optika merupakan bagian dari berbagai disiplin terkait termasuk elektro, fisika, psikologi, kedokteran (khususnya optalmologi dan optometri), dan lain-lain. Selain itu, penjelasan yang paling lengkap tentang perilaku optis, seperti dijelaskan dalam fisika, tidak selalu rumit untuk kebanyakan masalah, jadi model sederhana dapat digunakan. Model sederhana ini cukup untuk menjelaskan sebagian gejala optis serta mengabaikan perilaku yang tidak relevan dan / atau tidak terdeteksi pada suatu sistem. Di ruang bebas suatu gelombang berjalan pada kecepatan c = 3×108 meter/detik. Ketika memasuki medium tertentu (dielectricatau nonconducting) gelombang berjalan dengan suatu kecepatan v, yang mana adalah karakteristik dari bahan dan kurang dari besarnya kecepatan cahaya itu sendiri (c). Perbandingan kecepatan cahaya di dalam ruang hampa dengan kecepatan cahayadi medium adalah indeks bias n bahan sebagai berikut: n = c⁄v. berikut pembahasan soal-soal dari materi terkait di atas disertai SNMPTN :
GELOMBANG BUNYI
Efek Doppler
Chapter : [01] ; [02] ; [03] ; [04]
Chapter : [05] ; [06] ; [07]
Taraf Intensitas Bunyi
Chapter : [08] ; [09] ; [10] ; [11] ; [12] ; [13]
Dawai dan Pipa Organa
Chapter : [14] ; [15] ; [16] ; [17]
Chapter : [18] ; [19] ; [20] ; [21]
Chapter : [22] ; [23] ; [24] ; [25]
SNMPTN
Chapter : [01] ; [02] ; [03] ; [04] ; [05] ; [06]
Chapter : [07] ; [08] ; [09] ; [10] ; [11] ; [12]
GELOMBANG ELEKTROMAGNETIK
Chapter : [01] ; [02] ; [03] ; [04] ; [05]
OPTIK
Pemantulan dan Pembiasan
Chapter : [01] ; [02] ; [03] ; [04] ; [05] ; [06]
Chapter : [07] ; [08] ; [09] ; [10] ; [11]
Alat Optik dan Optika Fisis
Chapter : [12] ; [13] ; [14] ; [15] ; [16]
Chapter : [17] ; [18] ; [19] ; [20] ; [21]
SNMPTN
Pemantulan : [01] ; [02]
Pembiasan
Chapter : [03] ; [04] ; [05] ; [06] ; [07]
Chapter : [08] ; [09] ; [10] ; [11]
Alat Optik : [12] ; [13] ; [14]
Optika Fisis : [15] ; [16] ; [17] ; [18] ; [19]
Selamat belajar, semoga mendapatkan banyak manfaat dalam belajar untuk pemecahan masalah dalam kehidupan sehari-hari



Share:

Chapter Mekanika Plus SNMPTN

Elastisitas 
Dalam fisika, elastisitas (dari Yunani ἐλαστός "ductible") adalah kecenderungan bahan padat untuk kembali ke bentuk aslinya setelah terdeformasi. Benda padat akan mengalami deformasi ketika gaya diaplikasikan padanya. Jika bahan tersebut elastis, benda tersebut akan kembali ke bentuk dan ukuran awalnya ketika gaya dihilangkan.. Elastisitas sempurna hanya merupakan perkiraan dari yang sebenarnya dan beberapa bahan tetap murni elastis bahkan setelah deformasi yang sangat kecil. Dalam rekayasa, jumlah elastisitas suatu material ditentukan oleh dua jenis parameter material. Jenis pertama parameter material disebut modulus yang mengukur jumlah gaya per satuan luas (stress) yang diperlukan untuk mencapai sejumlah deformasi tertentu. Satuan modulus adalah pascal (Pa) atau pon gaya per inci persegi (psi, juga lbf/in 2). Modulus yang lebih tinggi biasanya menunjukkan bahwa bahan tersebut sulit untuk mengalami deformasi. Tipe kedua parameter mengukur batas elastis. Batas dapat menjadi stres luar di mana materi tidak lagi elastis atau deformasi luar di mana elastisitas hilang.
Medan Gravitasi
Medan gravitasi adalah medan yang menyebabkan suatu benda bermassa mengalami gaya gravitasi. Medan ini dibangkitkan oleh suatu benda bermassa. Didefinisikan secara rumus matematis sebagai besar gaya tarik dibagi massa benda.
Benda tegar
Benda tegar adalah istilah yang sering digunakan dalam dunia Fisika untuk menyatakan suatu benda yang tidak akan berubah bentuknya setelah diberikan suatu gaya pada benda itu. Pada sebuah benda tegar, Setiap titik harus selalu berada pada jarak yang sama dengan titik-titik lainnya sehingga bentuknya hampir selalu lingkaran. Benda tegar yang sedang berputar memiliki momen kelembaman, percepatan Linear dan percepatan sudut. momen kelembaman dapat disimbolkan I dengan rumus I=1/2 kali massa kali jari-jari benda tegar kuadrat atau I=1/2×m×R2 sedangkan percepatan Linear adalah alinier=(gaya+koefisien gaya gesek)÷setengah massa atau alinier=(F+fs)÷½m bisa juga dihitung dg jalan alinier=2(asudut+fs)
Impuls dan Momentum
Semakin besar massa suatu benda, maka semakin besar momentumnya, dan semakin cepat gerak suatu benda, maka semakin besar pula momentumnya. Misalnya, dengan kecepatan yang sama, jembatan yang tertabrak bus akan mengalami kerusakan lebih parah daripada jembatan yang tertabrak mobil. Mobil dengan kecepatan tinggi akan lebih sulit dihentikan daripada mobil dengan kecepatan rendah. Dan apabila terjadi tumbukan, mobil dengan kecepatan tinggi akan mengalami kerusakan lebih parah. Semakin besar momentum sebuah benda yang sedang melaju, semakin sulit untuk menghentikannya dan semakin besar tumbukannya jika mengenai benda lain.
Fluida
Fluida memiliki sifat tidak menolak terhadap perubahan bentuk dan kemampuan untuk mengalir (atau umumnya kemampuannya untuk mengambil bentuk dari wadah mereka). Sifat ini biasanya dikarenakan sebuah fungsi dari ketidakmampuan mereka mengadakan tegangan geser (shear stress) dalam ekuilibrium statik. Konsekuensi dari sifat ini adalah hukum Pascal yang menekankan pentingnya tekanan dalam menggolongkan bentuk fluid. Dapat disimpulkan bahwa fluida adalah zat atau entitas yang terdeformasi secara berkesinambungan apabila diberi tegangan geser walau sekecil apapun tegangan geser itu.
berikut keselurahan pembahasan soal pada mekanika untuk elastisitas, gravitasi, benda tegar, impuls dan momentum juga fluida disertai soal terkait untuk SNMPTN.
Elastisitas
Chapter : [01] ; [02] ; [03] ; [04] ; [05]
Chapter : [06] ; [07] ; [08] ; [09] ; [10]
Chapter : [11] ; [12] ; [13] ; [14] ; [15]
Gravitasi
Chapter : [01] ; [02] ; [03] ; [04]
Elastisitas dan gravitasi [SNMPTN]
Chapter : [01] ; [02] ; [03] ; [04]
Benda Tegar
Chapter : [01] ; [02] ; [03]
Chapter : [04] ; [05] ; [06]
Impuls dan Momentum
Chapter : [01] ; [02] ; [03] ; [04] ; [05]
Chapter : [06] ; [07] ; [08] ; [09] ; [10]
Chapter : [11] ; [12] ; [13] ; [14] ; [15]
Chapter : [16] ; [17] ; [18] ; [19]
SNMPTN : [01] ; [02] ; [03] ; [04] ; [05]
Fluida Statis
Chapter : [01] ; [02] ; [03] ; [04]
Chapter : [05] ; [06] ; [07]
Fluida Dinamis
Chapter : [01] ; [02] ; [03] ; [04] ; [05]
SNMPTN : [01] ; [02] ; [03] ; [04]
Selamat belajar, semoga mendapatkan banyak manfaat dalam belajar mekanika



Share:

Chapter Suhu dan Kalor Plus SNMPTN

Dampak pemanasan global : Menurut perkiraan, efek rumah kaca telah meningkatkan suhu bumi rata-rata 1-5°C. Bila kecenderungan peningkatan gas rumah kaca tetap seperti sekarang akan menyebabkan peningkatan pemanasan global antara 1,5-4,5°C sekitar tahun 2030 . Dengan meningkatnya konsentrasi gas CO 2 di atmosfer, maka akan semakin banyak gelombang panas yang dipantulkan dari permukaan bumi diserap atmosfer. Hal ini akan mengakibatkan suhu permukaan bumi menjadi meningkat. Mekanisme terjadinya efek rumah kaca adalah sebagai berikut. Bumi secara konstan menerima energi, kebanyakan dari sinar matahari tetapi sebagian juga diperoleh dari bumi itu sendiri, yakni melalui energi yang dibebaskan dari proses radioaktif (Holum, 1998:237). Sinar tampak dan sinar ultraviolet yang dipancarkan dari matahari. Radiasi sinar tersebut sebagian dipantulkan oleh atmosfer dan sebagian sampai di permukaan bumi. Di permukaan bumi sebagian radiasi sinar tersebut ada yang dipantulkan dan ada yang diserap oleh permukaan bumi dan menghangatkannya. Akibat meningkatnya suhu permukaan bumi akan mengakibatkan adanya perubahan iklim yang sangat ekstrim di bumi. Hal ini dapat mengakibatkan terganggunya hutan dan ekosistem lainnya, sehingga mengurangi kemampuannya untuk menyerap karbon di oksida di atmosfer. Pemanasan global mengakibatkan mencairnya gunung -gunung es di daerah kutub yang dapat menimbulkan naiknya permukaan air laut. Efek rumah kaca juga akan mengakibatkan meningkatnya suhu air laut sehingga air laut mengembang dan terjadi kenaikan permukaan laut yang mengakibatkan negara kepulauan akan mendapatkan pengaruh yang sangat besar. Itulah sekelumit cerita pemanasan global akibat adanya suhu dan kalor. Berikut materi keseluruhan dari pembahasan soal suhu dan kalor, teori kinetrik gas dan termodinamika :
SUHU DAN KALOR
Chapter : [01] ; [02] ; [03] ; [04]
Chapter : [05] ; [06] ; [07] ; [08]
Chapter : [09] ; [10] ; [11] ; [12]
SNMPTN : [01] ; [02] ; [03] ; [04] ; [05] ; [06] ; [07]
TEORI KINETIK GAS
Chapter : [01] ; [02] ; [03] ; [04]
Chapter : [05] ; [06] ; [07] ; [08]
Chapter : [09] ; [10] ; [11] ; [12]
SNMPTN : [08] ; [09] ; [10] ; [11]
SNMPTN : [12] ; [13] ; [14] ; [15]
TERMODINAMIKA
Chapter : [13] ; [14] ; [15] ; [16] ; [17]
Chapter : [18] ; [19] ; [20] ; [21] ; [22]
Chapter : [23] ; [24] ; [25] ; [26]
SNMPTN : [16] ; [17] ; [18] ; [19] ; [21] ; [22] ; [23]
Selamat membaca dan mendapatkan banyak manfaat dari materi di atas…. Sehat dan sukses selalu



Share:

Laser, Serat Optik dan Hologram


Laser
Laser adalah akronim dari Light Amplification by Stimulated Emission of Radiation. Laser Merupakan sumber cahaya yang memancarkan berkas cahaya yang koheren. Laser termasuk cahaya monokromatik. Laser mempunyai intensitas dan tingkat ketelitian yang sangat tinggi, sehingga laser banyak digunakan dalam berbagai peralatan. Laser dikembangakan pertama kali pada tahun 1960. Penerapan laser dalam kehidupan sehari-hari antara lain sebagai pemindai barcode di supermarket, alat pemutar CD atau DVD, laser printer, dan diode laser. Di bidang kedokteran, laser digunakan sebagai pisau bedah dan untuk menyembuhkan gangguan akomodasi mata.
Serat Optik
Selain contoh-contoh di atas, pemanfaatan laser juga dapat diterapkan dapal bidang telekomunikasi. Dalam bidang telekomunikasi, laser digunakan untuk mengirim sinyal telepon dan internet melalui kabel khusus yang disebut serat optic. Serat optic merupakan suatu serat transparan yang digunakan untuk mentransmisi cahaya, misalnya laser. Dengan menggunakan serat optic, data yang dikirim lebih cepat sampai. Karena kecepatan data tersebut sama dengan kecepatan cahaya yaitu 3.108 m/s.
Hologram
Perkembangan laser juga merambah bidang fotografi. Penggunaan laser dalam fotografi dikenak sebagai holografi. Holografi adalah pembuatan gambar-gambar tiga dimensidengan menggunakan laser. Hasil yang diperoleh dalam proser holografi disebut hologram. Mekanisme holografi adalah sebagai berikut. Objek yang akan dibuat hologram disinari laser. Objek tersebut kemudian memantulkan sinar dari laser. Perpaduan antara laser dengan sinar yang dipantulkan objek akan memberikan efek interferensi. Efek interferensi inilah yang memberikan bayangan objek tiga dimensi.
Begitu sejarahnya, semoga bermanfaat
Sumber : Fokus Fisika Kelas XII

Share:

VIDEO UPDATE

Kerinci, Jambi Indonesia

Waktu di Kerinci:

Popular Posts

Blog Archive

PERANGKAT-BAHAN AJAR+VIDEO KBM